ARITHMETIC DEMONSTRATION FROM THE CONCEPT OF GOD:
The Ratio From The Perfection
The Number PI
(π)


Archimedes obtained the first rigorous approximation of
by Circumscribing and Inscribing -gons on a Circle.


![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
Successive application of Archimedes’ Recurrence Formula
gives the Archimedes algorithm,
which can be used to provide successive approximations to (Pi)
The first iteration of Archimedes’ Recurrence Formula then gives
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() |
Additional iterations do not have simple closed forms,
but the numerical approximations for , 1, 2, 3, 4
(corresponding to 6-, 12-, 24-, 48- gons) are
<img width="157" height="25" src="https://archive.lib.msu.edu/crcmath/math/math/a/a_1371.gif" alt="\begin{displaymath} 3.00000 < \pi |
<img width="157" height="25" src="https://archive.lib.msu.edu/crcmath/math/math/a/a_1372.gif" alt="\begin{displaymath} 3.10583 < \pi |
<img width="157" height="25" src="https://archive.lib.msu.edu/crcmath/math/math/a/a_1373.gif" alt="\begin{displaymath} 3.13263 < \pi |
<img width="157" height="25" src="https://archive.lib.msu.edu/crcmath/math/math/a/a_1374.gif" alt="\begin{displaymath} 3.13935 < \pi |